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Abstract

The far field acoustic radiation from a lifting air-
foil in a three-dimensional gust is studied. The acous-
tic pressure is calculated using the Kirchhoff method,
instead of using the classical acoustic analogy ap-
proach due to Lighthill. The pressure on the Kirchhoff
surface is calculated using an existing numerical solu-
tion of the unsteady flow field. The far field acoustic
pressure is calculated in terms of these values using
Kirchhoff's formula. The method is validated against
existing semi-analytical results for a fiat plate. The
method is then used to study the problem of an air-
foil in a harmonic three-dimensional gust, for a wide
range of Mach numbers. The effect of variation of the
airfoil thickness and angle of attack on the acoustic
far field is studied. The changes in the mechanism of
sound generation and propogation due to the presence
of steady loading and non-uniform mean flow are also
studied.

Nomenclature

P

CO

pl

physical coordinates

Lagrangian coordinates of the

mean flow fluid particles

modified coordinate for defining ¢2

mean flow potential and

stream function

steady flow circulation

speed of sound in the medium

unsteady pressure

t Professor, Department of Aerospace and Mechanical
Engineering, Associate Fellow AIAA.

I Research Assistant, Department of Aerospace and

Mechanical Engineering, Student Member AIAA.

*Research Scientist,CFD Branch, Member AIAA

kl, k2, k3
A
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¢1
¢5

wave number vector

Lighthill drift function

frequency of the gust

in radians per second

unknown velocity potential

unknown component of ¢

known component of ¢

Introduction

The study of noise generated by propellers and
turbomachinery blades has received considerable at-
tention in the recent past. However, much of the at-

tention has focused on studying the propeller problem
in its full complexity, and little attention has been paid
to the more basic problem of noise radiated from an

arbitrary, lifting airfoil in non-uniform mean flow. The
characteristics of sound radiated from a lifting airfoil
in a gust is a fundamental aeroacoustics problem. The
aim of this investigation is to develop a method to
calculate the acoustic radiation from a lifting airfoil,
and to study the effects of thickness and loading. The
sound intensity and directivity can then be directly
related to the mean flow Mach number, airfoil geome-
try and angle of attack, and the characteristics of the

upstreamgust.
The classical approach in aeroacoustics problems

is to model the acoustic sources as monopoles and mul-

tipoles, and to estimate their strength either experi-
mentally or analytically. Thus, acoustic radiation from
bodies was mainly studied using Lighthill's acoustic

analogy. However, estimation of these acoustic source
terms from aerodynamic results is difficult and prone
to error. Even after estimating the sources, one has
the tedious calculation of the integrals to contend with.
Clearly, this approach of calculating the acoustics of a
realistic model is a formidable task.

The acoustic radiation is the unsteady pressure
which radiates to the far field due to the unsteady



pressurefluctuations on the airfoil surface. Recently,
highly accurate solutions to the problem of an arbi-
trary, lifting airfoil encountering a periodic gust in
compressible flow were obtained by J. R. Scott and
H. M. Atassi [11, [2], [3], [4]. Hence, theoretically
one can directly calculate the acoustics from the un-
steady solution given by the Scott-Atassi solver. This
method, which does not require knowledge of the
acoustic sources, is the one used in this study.

Mathematical Formulation

The current work is concerned with the aeroacous-

tics of arbitrary lifting airfoils encountering a periodic
gust. The basic aerodynamic theory was developed
in References [1] - [5]. Since this aerodynamic the-
ory is used to calculate the airfoil acoustics, we repro-
duce some of the basic derivation below. This section

presents a brief outline of the formulation of the un-
steady boundary value problem. For complete details
the reader is requested to consult References [3] or [4].

The equations governing an inviscid, compressible
flow past an airfoil at non-zero incidence to a stream

with uniform upstream velocity Uoo_"are the continu-
ity, momentum and entropy conservation equations.

Dp
D--7 + pV-U = 0 (1)

mg
P-b-Y= -vp (2)

Ds
D---_= 0 (3)

where, _ = _ + LT. V, t denotes time, and p, L7, and
p and s denote the fluid density, velocity, pressure and
entropy respectively. It is assumed that there are no
shocks in the flow. Also the fluid is assumed to be an

ideal, non-heat conducting gas with constant specific
heats. It is also assumed that there are no imposed
entropy disturbances or incident acoustic waves.

Assuming small unsteady perturbations in the
flow quantities enables linearization of the above equa-
tions.

g = 0o + a (4)

p = po+ p' (5)

p = p0 + / (6)

Using the formulation due to Atassi and Grzedzinski
[5], the boundary value problem is defined as follows.

A two-dimensional airfoil ( See Figure 1) is placed
in a potential mean flow with three-dimensionM, up-
stream vortical disturbances of the form

aoo = _e_(_-_v®') (7)

The amplitude I_ satisfies I_l _< Joo, and g is
defined as

Xl = vooA (s)

_0

x_ - p_g= (9)

x3 = x3 (10)

where, q#0 is the stream function of the mean flow, za is

the spanwise spatial coordinate, and A is the Lighthill
"drift" function [10].

The velocity field is expressed as

g(,_,t) = tTo(_+ ,_(_,t) (11)

where, ffo(_ is the steady mean flow velocity and
ft'(Z,t) is the unsteady perturbation velocity.

The unsteady velocity can be expressed as the
sum of a vortical part and an irrotational part, such
that

a(£, t) = _R) + V_b (12)

where the unsteady potential@ satisfiesthe inhomoge-

neous, non-constant coefficientconvectivewave equa-
tion.

Do 1 Do 1V.(p0V¢)_(_b-7_) -

= ±v.(poa")
Po

and the unsteady pressure,;/, is given by

(13)

p, Do
= -Po (_'_-q_ (14)

The unsteady pressure is purely dependent on the irro-
tational part of the flow and the vortical velocity u-<R)
does not induce any pressure fluctuations (to second

order).
The boundary conditions on $ are

V_b. fl = 0 airfoil surface (15)

-_t(A@) = (16)0 wake

A[V4. fi'] -- 0 wake (17)

V¢ ---*-V_ as zl _ -oo. (18)

Equations (16) and (17) specify the continuity of the
pressure and normal velocity across the wake, respec-

tively. For a complete discussion of $, the reader
should consult Reference [5].

The potential functions _, and _2 are introduced,
where

= @, - _2 (19)



and ¢2 isa known functionwhich isconstructedsuch
that

I¢2- _l---.0 as l_---.oo (20)

where I_[isthe distancefrom the airfoilcenter.

The spatialcoordinatesare non-dimensionalized

by c._, the steady flow densityP0, by poo;the unsteady

pressurep',by pooUoo[_; and time, t,by 2-_," The

normalized wave number, kl,isalsocalledthe reduced

frequency,and isdefinedas

o_c

" kl =
2Uoo

where v and Uoo are the dimensional angular fre-

quency and the free stream velocity,respectively.

Henceforth,unless otherwise specified,allquantities
are assumed non-dimensional.

The non-dimensional unsteady perturbationpres-
sure isnow given by

p_ Do
= -p0_(¢i -¢2) (21)

where
Do 0 2 0

D---_= 0--t + U0

The independent variablesare chosen tobe 4i0and 90,

the mean flow potentialand stream function,respec-

tively.

Theoretically,the unsteady pressureinthe entire

flow fieldcan be calculatedusing Equation (21) pro-

vided the potentialfunctions¢I and _b2are known. Of

the two, only ¢I isunknown and issolvedfor;¢2 isa
known functionof the upstream disturbance.

The time dependence ofthe boundary valueprob-

lem comes entirelythrough the harmonic term e-it_t.

A simple change in the dependent variablecan trans-

form the problem from the time domain to the fre-

quency domain, and significantlysimplifythe problem.

The frequency domain transformationis

¢1 = _te -it_t+iks_3 (22)

By including the ikaZ3 term in the transforma-
tion, the harmonic dependence on the spanwise com-
ponent z3 is also eliminated, since all of the eits=3
terms then factor out from each side of the equation.

Further simplification is obtained by making the
following change of both dependent and independent
variables:

_01 = ¢1e -iK'# (23)

where

and

K1 - klM_ (24)

• =_0 (2s)

The unknown potentialin the frequency domain is¢I.

We alsointroduce_o_and ¢2, where

¢2 = _2e -ik'_+it_*s (27)

and

_ = ¢:-iK,® (28)

The aerodynamic code solves for the unknown un-
steady potential, ¢1, which will also be referred to as
the solution to the gust problem.

The pressure can be expressed in terms of these
transformed potentials as

2 0 - •

p' = -:0(-i_1 + u0 _oo)(_,_ - _)e -'_''+'_'_ (29)

We introduce p such that,

p'= pe-_k_t+i_ (30)

and we obtain

2 0

p = -po(-ikl + U0 _00)(¢h - _2) (31)

Following the transformations given in Equations (23)
and (28) for _'t and _o_,and in Equations (25) and (26)
for the independent variables, we get

p = -po[-i(k_ -6 U0_K_)(¢_ - ¢_)

2 0
+u0 b--_0(¢_- ¢_)]e-_K'# (32)

Formulatiolt of the Kirchhoff Method

The Scott-Atassi unsteady aerodynamic solver
calculates the solution on a grid that extends to the
far field. In theory it should be possible to compute
the acoustics using the formulas developed in the pre-
vious section. However, for symmetric, unloaded air-
foils and loaded airfoils, the Scott-Atassi code does not
yield accurate far field results in spite of very accurate
near field pressure values and lift coefficients (accurate
within 1% in the validation). This is well illustrated in
Figure 2. These errors are grid independent since dou-
bling the grid points on the airfoil from 26 to 52 ( for
a symmetric, unloaded airfoil with a thickness ratio of
0.03 ) did not yield any improvement. It is important
to note that the acoustic energy is a very small fraction
of the total flow energy. Therefore, a computational
method such as this requires highly accurate values



of the flow potential. However, though the unsteady
solver yields highly accurate aerodynamic results (near
field solution), the far field solution is not suitable for
direct calculation of the acoustics. Since the far field

solution is very sensitive to the non-reflecting bound-
ary condition imposed on the outermost grid line, it is
possible that higher order terms need to be included in
the Sommerfeld radiation condition. Also the effects

of numerical dispersion result in reduced accuracy in
the far field. The high accuracy of the Scott-Atassi
code in the mid field suggests the use of the Kirch-
hoff method to circumvent the difficulties arising from
direct calculation of the acoustics.

In the Kirchhoff method the unsteady flow field is

divided into an inner region governed by the inhomo-
geneous, nonlinear flow equation, and an outer region
governed by the homogeneous convective wave equa-
tion. The convective wave equation is transformed to
the Helmholtz equation in the frequency domain. In
generM, using Green's theorem, we can calculate the
value of a function which satisfies Helmholtz's equa-
tion, at any point in the outer region, provided we
know the values of the function and its normal deriva-

tive on the surface bounding the outer region. If all
the acoustic sources producing the sound field, and
all the solid boundaries are confined to a finite region
R, which is the inner region, enclosed by a Kirchhoff
surface C, then the acoustic pressure at any point out-
side C, can be calculated by knowing the pressure and
its normal derivative on C, and the free-space Green's
function for the problem (See Figure 3).

The Kirchhoff surface is located in the Prandtl-

Glauert ( 4,-_ ) plane. In the following derivation, the
superscript %' represents the quantity associated with
the observation point, so that

Since the mean flow about the Kirchhoff surface

is assumed to be uniform, the unsteady perturbation
potential, _b, and the acoustic pressure satisfy the con-
vective wave equation. Also since the outer region is
source free the equation is homogeneous.

The transformed potential (¢1 - ¢2) satisfies the
Helmholtz equation, but p, as defined by Equation (32)
on the Kirchhoff surface does not satisfy the Helmholtz

equation. However, Equation (32) can be written as

P -- -P0[£(¢1 - ¢2)]e -iK'° (33)

where
s0

1: = -i(kl + U02Kt) + Uo _oo

We define

= = L:(¢1-
p0

(34)

(35)

If (¢1- ¢2) satisfies the Helmholtz equation in the
Prandtl-Glauert plane, then

(vg + K2)(¢1 - = 0 (36)

where

and

2 2

K2 klM £ k_ (37)

0 2 0 2

vg - oo.2 + o,t,.2 (38)

Outside the Kirchhoff surface, the non-dimensional
mean flow velocity is uniformly equal to unity. There-

fore,

£ = -i(kl + Uo2K1) + Uo 2_
0_o

'£o (38)

where

o (39)L:o= ) +

Also,

£0(V_. + K_)(¢1 - ¢2) = (V_. + K_)/:0(¢1 - ¢2) = 0
(40)

since the operators £:0 and (V_. +K 2) are linear. Using
Equations (35) and (38), we arrive at

(V_. + K2)/5 = 0 (41)

We can now calculate _ in the far field using Kirch-

hoff's equation.

f - OG_.

P(_') = ]c[P(_-_-_ (" I_

where _, the complex conjugate of i5, is used in

Equation (42), because an e ik*t dependence was as-
sumed when deriving the Kirchhoff equation. G is the
free-space Green's function for the two-dimensional
Helmholtz equation, and is given by

G = -4HO)(KR), R = IF* - _ (43)

and
OG

=

.K. (2),Kn\r,O* - @,00 .@* - @ 0_
t mL --X--JT . + (44)

where F* = (O*, @*) is the observation point in the
far field, and F'= (0, @) is the "source" point on the

4



Kirchhoffsurface. The unit outward normal to the

Kirchhoff surface is g (See Figure 3).
It is clear from the foregoing discussion that the

location and shape of the Kirchhoff surface, C, is of
little importance, provided it encloses all the acoustic
sources. However, in practice the choice of C is limited
by two important considerations. Firstly, it must be
large enough to include the region of nonlinear behav-
ior. This is ensured by checking that, the deviation
in the non-dimensional mean flow velocity values from
unity, is less than 3%. Secondly, C cannot be so large
as to lose accuracy of the numerical solution in the mid
field [4], [7]. Within these limits, the method should
provide consistent results for small variations in C.

It was found that the far field results were ex-

tremely sensitive to the location of the Kirchhoff sur-
face, even within the aforementioned limits. See Fig-
ure 4 (b). This problem was traced to numerical errors

incurred in evaluating the _ term in Equation (42).
Since this term involves second derivatives of the solu-

tion, it could not be evaluated with desired accuracy.
This motivated US to develop a modified Green's func-

tion which eliminated the _-_ term altogether.

The Modified Green's Function Auvroach

In this section we define a new Green's function,

(_ , which is constructed such that it vanishes on the

Kirchhoff surface, thus eliminating the troublesome

Go_-_-_term in Equation 42.
Let

(_(_r _) = G(_) + g(_r _) (45)

where G(_r _) is the familiar free-space Green's func-

tion and g(_r _) is an unknown function to be deter-
mined. G is constructed such that

O = 0 on C (46)

Also we require (_ to satisfy

(V 2 + K2)(_(_r -*) = -_(_'- F') (47)

where _' is a variable point in the field, and _' is the
far field point where we are interested in determining
13 (See Figure 5). The Laplacian operator is

a 2 02

v = + 0,---- e= (0, ¢)

By definition

(v 2+ K2)a(r-];:) = e')

and Equation (47) implies that

(v + = 0

Also Equations (45) and (46) imply that

g(E;_) = -G(E; _) = _ H(o2)(KR)

(48)

on C

(49)

1 f0" G(_r_) d¢ (51)
ao- tH_)(Krk)

and

2 fo'G(_d_)cos[n(8-8")]d¢ (52)
an- _HO)(Kr_ )

where

where

¢ = 0- 0* and [r_ = r_

Once g(_r _) is known, we can rewrite Equation

(42) as

oO oa og (54)
o--g= 3-g.+

g(_) = _=oa,_H(2)(Krk)cos[n(0 - 0")] (50)

where only Hankel functions of the second kind are
considered in order to satisfy Equation (49).

The coefficients an are easily obtained as

where R = ]_'-F* I.
Any solution to the Helmholtz equation can be ex-

pressed as a summation of Hankel functions, which are
the fundamental solutions to the Helmholtz equation
in cylindrical coordinates.

In order to solve for g(_r'$), we restrict our choice
of C to a circle of radius rk. This is not a serious

restriction as the Kirchhoff surface corresponds to a
= constant, line in the computational domain. In

the Prandtl-Glauert (O-@) domain the level curves of
the (rt-_) coordinate system tend to rays and circles
in the far field. To ensure that our approximation is
valid, we limit the eccentricity of the Kirchhoff ellipse
to 5%.

Let _" be the observation point on the Kirehhoff
surface, such that 14 = rk and F* be a "source" point
in the far field. See Figure 5. For the purposes of
evaluating the ttankel functions (which are dependent
only on K and the distance R, between the observa-
tion point, _', and the source point, _') the point _"
is equivalent to its "reflection" across the _' vector,
point #*. In other words, the problem is symmetric
about the vector _, and one may write



and

0G K 2)(KR)[ (_k - _*_ _._lt

o- °g= 0H¢2)(I':',)0.cos[,,(e- e')] (55)

and we can write

OH(2)(Krk) _

On

cgH(2)(Krk) t__Ork O¢)k Ork 0_
+ ) (56)

This method gave consistent results for small vari-
ations in the location of the Kirchhoff surface (See Fig-
ure 4 (a)) , and was used for all subsequent calcula-
tions.

Therefore, using the modified Kirchhoff approach,
one can obtain accurate far field acoustic pressure val-
ues from the Scott-Atassi mid field solution. For the

purpose of numerical calculation, the far field obser-
vation points are evenly distributed on a circle of suf-

ficiently large radius ( r is taken to be 50 times the
half-chord ) in the Prandtl-Glauert ( _- _ ) plane.

The function g(_) is evaluated in terms of the coeffi-
cients a_, for the observation point. It should be noted
that this function depends only on the location of the
Observation point and the Kirchhoff surface, and the

value of K. Then the derivative _ is evaluated as per
Equations (54) and (55). Finally, '_he far field acoustic

pressure is obtained using Equation (53), where the in-
tegral is numerically approximated by a summation of
the integrand over all the points located on the Kirch-
hoff surface. Using the relations given in Reference
9, pp. 28-29, we obtain the corresponding location of
the observation point in the physical plane. Noting

that the pressure in the far field goes as :_,, the radial
dependence of the acoustic pressure is eliminated by
multiplying by vG.

Numerical P_._ults

The modified Kirchhoff method was validated for

a range of frequencies and Mach numbers against
the semi-analytical method developed by Atassi and
Dusey which is detailed in Reference 8. In all the

cases presented in this paper, the upstream gust veloc-
ity vector, Idl is of unit magnitude. For the transverse
gust cases this simply means that ag_= 1. See Figure 6

(a). In the case of the two-dimensional gust we assume
that k2 = /cl, and since the upstream disturbance is

solenoidal, (_./_ = 0), we get -al = a2 = 0.7071.

See Figure 6 (b). For the three-dimensional gust cases
(also referred to as oblique gusts), we assume 1:2 =/¢1,

and we fix ka = 0.4. Also we assume _ = -¼, and
a2 > 0. These conditions, along with the solenoidal

condition, (_. ]_ = 0), determine the magnitude of aa.

See Figure 6 (c).
In Figures 7 to 10, we compare polar plots of the

acoustic pressure in the physical plane, for selected,
critical test cases, as obtained by the present approach
and the semi-analytical approach developed in [8]. The
length of the line joining any point on the plot to the
origin represents the magnitude of the acoustic pres-
sure at a far field point, and the angle the line makes
with the z-axis is the angular location of the far field

point. Since the pressure in the far field goes as _7,
where r is the radial location of the far field point, we
plot/3V_ , thus removing the dependence on r.

The transverse gust cases are compared in Figures
7 and 8 for kl varying from 0.1 to 5.0 at a Math number
of 0.8. The agreement between the two results is found
to be excellent. The oblique gust cases are compared in
Figures 9 and 10 for ka = 0.4 at a Mach number of 0.8.
It is found that the agreement is good for kl = 1.0, but
there is a discrepancy in the magnitude for kl = 0.5.

The effects of airfoil thickness, mean loading and
Math number on the acoustic pressure emitted from
an airfoil placed in a transverse or oblique gust are now
considered. The effect of thickness is first examined,
and then the effect of mean loading through both angle
of attack and camber.

Effects of Airfoil Thickness

In this section we consider Joukowski airfoil ge-

ometries of varying thickness. First we study the
transverse gust cases. The acoustic pressure plots for
the incompressible flow cases (Moo = 0.1) with kl
equal to 1.0 and 3.0 are shown in Figures 11 and 12. At
low Mach numbers and moderate reduced frequencies

(kl < 1.0) the airfoil thickness does not have any sig-
nificant effect on the acoustic pressure and the dipole
model is an accurate representation of the airfoil in a

gust. Hence, those cases are not presented here. How-
ever, at higher frequencies (see Figure 12) it is found
that the airfoil thickness tends to tilt the directivity of
the acoustic pressure toward the upstream direction.

Figures 13 and 14 show the effect of thickness at
a Mach number of 0.5. Again we note that the effect
of thickness is to increase the magnitude of the pres-

sure in the upstream direction (_ < 0 < 7r). This is
due to the fact that the incoming flow "sees" a finite



rounded leading edge as the airfoil thickness increases,
as opposed to the infinitesimally thin, flat plate lead-
ing edge. This causes acoustic propogations in the
upstream direction. At higher Mach numbers the ef-
fect of thickness is more pronounced. In Figure 14 it
is observed that the effect of thickness is to increase
the acoustic pressure. However, the magnitude of the
unsteady lift values actually decrease with increasing
thickness. Hence, a simple dipole model would predict
a much smaller value of the acoustic pressure. The
increase in acoustic pressure is due to the effects of
non-uniform mean flow. Firstly, the non-uniform mean
flow refracts the acoustic waves radiating from the air-
foil surface. Even for a uniform mean flow, at high
Mach numbers, it is known that the acoustic waves
will propogate at different speeds in different direc-
tions. This is essentially the Doppler effect. How-
ever, if the mean flow is non-uniform, the propogation
speed will depend not only on the direction but also on
the spatial location of the point under consideration.
Goldstein, Dittmar and Gelder [9] have shown that the
sound generated by these "quadrupole" effects could
become significant at higher Mach numbers. These
non-uniform flow effects are discussed in detail in the
next subsection.

For the M¢¢ = 0.8 case, there is a shock on the

12 percent thick airfoil and there is as yet no provision
in the Scott-Atassi code to handle shocks. Therefore,
only the 3 and 6 percent thick airfoil cases are con-
sidered at this Mach number. In Figures 15 and 16,
results are shown for reduced frequencies of 1.0 and
3.0. The results confirm our previous conclusion that
airfoil thickness tends to increase the acoustic pressure
in the upstream direction. This effect is observed only
at reduced frequencies higher than 1.0. It is also noted
that the refraction effect of non-uniform flow could ei-

ther increase or decrease the magnitude of the acoustic

pressure.

In Figures 17 through 21, the effect of thickness
for the oblique gust case is studied. The kl = 0.5 case
is not shown at Moo = 0.5 since there is no sound
at that frequency. The parameters should satisfy the
relation

kz > k3_----

for sound waves to propogate. At Moo = 0.5 it is found
that for the oblique gust case, the reduction in the
magnitude of the acoustic pressure follows the reduc-
tion in the unsteady lift. At Moo = 0.8, the magnitude
of the acoustic pressure is almost constant, though the
unsteady lift values increase. In the following subsec-
tion, an attempt is made to gain some insight into the
refraction effects encountered in the cases considered

this far. This concludes the study of thickness effects.
In the next section the effects of mean airfoil loading
are examined.

Refraction Effects of Non-uniform Flow

In general it is very difficult to quantise the refrac-
tion effect of the non-uniform mean flow. However, if
we take our Kirchhoff surface on the airfoil itself, and
assume the mean flow to be uniform, we can compare
the pressure plots and gain some insight into the mech-
anism of sound propogation in non-uniform mean flow.

Since the Kirchhoff surface is no longer a circle,
we cannot use the modified Green's function approach
here. Hence, we revert to the free-space Green's func-
tion approach. Fortunately it is possible to express
the normal derivative of the unsteady pressure on the
airfoil surface in terms of the unsteady velocity on the
airfoil surface, and the known, steady mean flow quan-
tities. This enables us to use th_ free-space Green's
function approach, which was not possible when the
Kirchhoff surface was located in the far field.

The unsteady pressure (physical), is given by
Equation (21). Differentiating both sides with respect
to @ we obtain

0 2 O .0¢
(_ + u__-_)_

+2u00_ 0¢ 0 p'0_- 0@(_ ) (57)

Denoting ul and vi to be the components of the irro-
rational velocity vector, we can write

0_ _ 1
__ (_)u_ (58)

0¢ 1
- (_)w (59)

Substituting the above in Equation (57), we obtain

1 0 20 1
N(N + u_°lw + _,u0_(N)

+ 2 UoOUo c9¢ 10p' p' cgpo
a_ o_ - p0o_ + _ (60)

Noting that

a(_+uo_ )v,=0

and
0 1 8U0

uo_(_) - 0¢

and substituting for u_ we get

OUo cgUo 1 cgp' p' 8po (61)
-,,-g_ + 2.,-_- = -70_ + p0_ 0_

: 7



Identifying o_ with _,' we get an expression for the
• _I#° .

normal denvatwe of the pressure m terms of the un-
steady irrotaional velocity and the known mean flow
quantities.

Op' , OUo ,, OtTo f Opo
(62)

This formula was used to calculate the normal deriva-

tive of the pressure on the airfoil surface and subse-

quently the acoustic pressure was calculated using the
free-space Green's function approach.

The acoustic pressure plots obtained assuming
non-uniform, and uniform mean flow, for an airfoil
with a thickness ratio of .12 in a transverse gust with
kl = 3.0 at a Mach number of 0.5 are shown in Figure
22. It is seen that both the magnitude and directiv-
ity of the acoustic pressure are significantly altered if
non-uniform flow effects are neglected. In the case of

uniform flow the magnitude is reduced, and this is as
expected, since a dipole model of the problem would
predict acoustic pressure proportional to the unsteady
lift.

Similar plots axe shown in Figures 23 and 24. In

Figure 24, a 6 percent thick airfoil in a transverse gust
with /q = 1.0 and Moo = 0.8 is considered. It is
shown that dipole models can underpredict the peak
magnitude of the acoustic pressure by as much as 25%
in situations where refraction effects are important. It
is thus seen that the refraction effects can become very

significant at higher Mach numbers.

Effects of Angle of Attack

The effects of airfoil angle of attack on the far field
acoustic pressure are now examined. The sound radi-
ated from a 12 percent thick Joukowski airfoil placed
at varying angles of attack is compared with the sound

radiated from a symmetric, unloaded 12 percent thick
Joukowski airfoil.

In Figures 25 to 30 the incompressible, transverse
gust cases are presented. The thickness ratio of the air-
foil is chosen to be 0.12, since the most critical cases
occur at this value. It must be noted that the angle the

field point makes with the z-axis in the angle of attack

cases is (0 - a) and not 0. Since the only symmetry
in the problem is about the stagnation streamline, the
results are presented in this format. The reduced fre-

quency is varied from 0.1 to 3.0. The most striking dif-
ference between loaded airfoil cases and the unloaded

ones is that the acoustic pressure no longer vanishes on
the wake. This is due to the fact that, in the unloaded
cases the unsteady potential is an odd function of _0,

and hence, the pressure is also an odd function of _0-

On the wake, the unsteady potential _b is discontinuous
such that

_b+_ 4,- = A(,_)

where _+ denotes the unsteady potentialat a point

justabove the wake, and _- denotes the unsteady po-

tentialat a point just below the wake surface. The

potentialjump satisfies

For a fiat plate or symmetric airfoil, _ is an odd func-
tion and we get

_+ = -_- = 2(A_)

Consequently, on the wake we get iv'to be zero for

thesecases.This isnot trueforthe generalcase ofthe
loaded airfoil.

At low Mach numbers the effectof the angle of

attackisto reduce the acousticpressureon the upper

side (0 <:(O-a): < _r), and to increase it on the
lower side (_r <:(0-a): < 2_'). For the kt = 0.1
case (see Figure 25), it is observed that there is practi-
cally no change in the acoustic pressure as we go from
a = 3 ° to a = 5 °. As the angle of attack is increased
from 0 ° to 3 ° the magnitude of the unsteady lift drops
by 1.14%. However, there is a drop of only 0.5% from
a = 3 ° to a = 5 °. This could be one of the reasons for

the acoustic pressure remaining relatively unchanged.
It is important to note that the lower lobe of the acous-
tic pressure actually inreases with increasing angle of
attack, while the unsteady lift decreases. This implies
that the effects of mean loading can be important even
at low Mach numbers. In Figure 26 the angle of attack
is varied from 2 ° to 10 ° at a Mach number of 0.1 for

a reduced frequency of 0.1. It is seen that increasing
mean loading has the effect of reducing the upper lobe,
so that at a = 10 ° the upper lobe is almost completely
eliminated.

In Figure 27 the /q = 0.5, Moo = 0.1 case is
presented. The elimination of the upper lobe is now
observed at even lower angles of attack. For values
of (0.5 < kt < 1.0), some very interesting effects are
observed. It is seen that at/q = 0.5, the maximum

acoustic pressure is along the (0 - a) = _ direction.
However, for hi = 1.0 (see Figure 28), the maximum
is along the (0 - c0 = lr direction.

It is of interest to determine whether the large
peak in acoustic pressure observed in Figure 28, along
the (# - a) = _ direction, is due to the airfoil leading
edge thickness or due to mean loading. In Figure 29
the same case is studied for an airfoil thickness ratio of

0.03. From this plot we conclude that the peak is not
due to airfoil thickness. Further parametric studies are
needed to determine the exact cause of this peak.

The plot in Figure 30 concludes the incompress-
ible cases. Here the value of kl is 3.0. For the ex = 3 °



case, the usual suppression of the upper lobe is ob-
served. However, for the a = 5 ° case, there is a dis-
tinct rotation of the line of symmetry of the acoustic

directivity.
In Figures 31 to 34 the Moo = 0.5 cases are pre-

sented. It is observed that at higher Mach numbers

and low frequencies, the effect of loading is not signif-
icant. See Figure 31 where kl = 0.1. As the reduced
frequency is increased from .1 to .5, the effect of an-
gle of attack is to rotate the acoustic directivity in a
counter-clockwise fashion (See Figure 32). At kl = 1.0
(See Figure 33) there is a very strong effect of angle
of attack. At this frequency, increasing angle of at-
tack increases the upper lobe of the acoustic pressure

by as much as 50% for the a = 5° case though the
magnitude of the unsteady lift actually decreases by
1% . Also the maximum occurs at (0 - a) < _ rather
than at (0 - a) > -_, which was documented as the
effect of thickness in'the unloaded case. Furthermore,

increasing angle of attack introduces a double lobe on
the lower side of the plot (_r < 0 - a) < 2x).

Figure 34 concludes the transverse gust cases. It
is seen that at a reduced frequency of 3.0, numerous
lobes appear, both above and below the airfoil. There
are two distinct peaks observed at (0 - a) = _ and

(0 - a) - _-. The region below the airfoil seems to be
more important at this frequency.

The oblique gust cases are shown in Figures 35
and 36. For the kl = 1.0 case, the effect of increasing
angle of attack is to amplify the acoustic pressure in
the region above the airfoil, and to suppress the acous-
tics in the region below. On increasing the reduced fre-
quency to 3.0, numerous lobes appear. The unsteady
lift values decrease in magnitude, with increasing angle
of attack for kl = 1.0, while for kl = 3.0 they increase
with increasing angle of attack.

The effect of mean loading due to angle of attack
is to always increase the magnitude of the acoustic

pressure, and to alter the directivity. The change in
directivity is specific to the gust, freestream and airfoil

geometry parameters. It is not possible to generalize
these trends, rather they have to be investigated on a
case to case basis.

airfoil is fairly accurate in predicting the acoustics.
However, at higher Mach numbers refraction effects
of the non-uniform mean flow become significant and
the dipole model is not adequate.

In the loaded airfoil cases, it is observed that the

dipole model is not valid even for incompressible cases
with moderate values of the reduced frequency. The
overMl effect of mean loading is to increase the magni-
tude of the acoustic pressure and to alter the directiv-

ity pattern. Since the dipole model is no longer valid,
the magnitude of the unsteady lift can no longer be
correlated with the acoustic pressure magnitude.
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Conclusion

A computational method, based on the Scott-
Atassi unsteady code, has been developed to obtain
the acoustic pressure radiated from arbitrary lifting
airfoils. The effects of airfoil thickness, and mean load-

ing have been studied for a range of Mach numbers and
reduced frequencies. It is seen that effect of thickness
alone is not significant at low Mach numbers and mod-
erate reduced frequencies. For reduced frequencies less
than 3.0, the dipole model of the symmetric unloaded
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!¢igure2. (_o-mparisonbetween t'argfieldacoustic pressure values calculated using

the Kirchhoffmethod and the direct calculation method for a three percent thick

Joukowski airfoil in a transverse gust at M,_ = 0.I ; k, = 1.0. The semi-analytical

results for a flat plate encountering the same gust are also shown.
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semi-analytical results are also shown.
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(a).

Transverse Gust

k2--=0, k3 = 0, al =0, a2---- 1, a3 =0

(b).

Transverse and Longitudinal Gust

b'_;'

k2 = ]¢1, k3 ---- 0, a_ ---- --a2, [a[ ---- 1, a2 > 0

Q2

Three-Dimensional Gust

(c).

* _.-.42 r¢/k

k2 =kt, /,:3 .4, ff 1_ 0, [ffl= 1, a2 >0, _x 7

Figure 6. Gust conditions for (a) a transverse gust, (b) a transverse

and longitudinal gust, and (c) a three-dimensional gust.
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Figure 24. Refraction effect of non-uniform flow on the _.coustic pressure radiated by

a symmetric, unloaded 3oukowski airfoil in a transverse gust. thickness ratio=.06.

3/oo = 0.8, k, = 1.0.
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Figure 25. Effect of angle of attack on the acoustic pressure radiated by a Joukowski Figure 26. Effect of angle of attack on the acoustic pressure radiated by a Joukowski

airfoil in a transverse gust. thickness ratio=.12. M._ = 0.1, k_ = 0.1 . airfoil in a transverse gust. thickness ratio=.12. M® = 0.1, k_ = 0.1 .
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Figure 27. Effect of angle of attack on the acoustic pressure radiated by a Joukowski Figure 28. Effect of angle of attack on the acoustic pressure radiated by a Joukowski

airfoil in a transverse gust. thickness ratio=.12..'4= = 0.1, k, = 0.5 . airfoil in a transverse gust. thickness ratio--.12. M= = 0.1, k, = 1.0.
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Figure 29. Effect of angle of attack on the acoustic pressure radiated by a Joukowski

airfoil in a transverse gust. thickness ratio=.03, :_,fo= = 0.1, k_ = 1.0 .
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Figure 30. Effect of angle of attack on the acoustic pressure radiated by a Joukowski

airfoil in a transverse gust. thickness ratlo=.12. M'= = 0.1, k_ = 3.0.
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Figure 31. Effect of angle of attack on the acoustic pressure r_diated by a Joukowski

airfoil in a transverse gust. thickness ratio=.12..%1_ = 0+5, kt = 0.I .

Figure 32. Effect of angle of attaz..k on the acoustic pressure radiated by a Joukowsk

airfoil in a transverse gust. thickness ratio=.12..t'/'._ = 0,5, kt = 0.5 .
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Figure 33. Effect of angle of attack on the acoustic pressure radiated by a Joukowski

airfoil in a transverse gust. thickness ratio=.12. M_, = 0.5, k, = 1.0 .

Figure 34. Effect of angle of attack on the acoustic pressure radiated by a Joukowski

airfoil in a transverse gust. thickness ratio=.12. M_¢ = 0.,5, k_ = 3.0 .
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Figure 35. Effect of angle of attack on the acoustic pressure radiated by a

Joukowski airfoil in an oblique gust. thickness ratio=.12. M_ = 0.5, kt = 1.0.

k3=0.4, ]_[= I, _:, =-;,r k_=k,,(T.['=0, a2>0.
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Figure 3& Effect of angle of attack on the acoustic pressure radiated by a

Joukowski airfoil in an oblique gust. thickness ratio=.12. M_. = 0.5, ki = 3.0.
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